5 research outputs found

    Solving Poisson's Equation on the Microsoft HoloLens

    Get PDF
    We present a mixed reality application (HoloFEM) for the Microsoft HoloLens. The application lets a user define and solve a physical problem governed by Poisson's equation with the surrounding real world geometry as input data. Holograms are used to visualise both the problem and the solution. The finite element method is used to solve Poisson's equation. Solving and visualising partial differential equations in mixed reality could have potential usage in areas such as building planning and safety engineering.Comment: 2 pages, 9 figure

    Robust preconditioners for PDE-constrained optimization with limited observations

    Get PDF
    Regularization robust preconditioners for PDE-constrained optimization problems have been successfully developed. These methods, however, typically assume that observation data is available throughout the entire domain of the state equation. For many inverse problems, this is an unrealistic assumption. In this paper we propose and analyze preconditioners for PDE-constrained optimization problems with limited observation data, e.g. observations are only available at the boundary of the solution domain. Our methods are robust with respect to both the regularization parameter and the mesh size. That is, the condition number of the preconditioned optimality system is uniformly bounded, independently of the size of these two parameters. We first consider a prototypical elliptic control problem and thereafter more general PDE-constrained optimization problems. Our theoretical findings are illuminated by several numerical results

    Variational data assimilation for transient blood flow simulations - Cerebral aneurysms as an illustrative example

    No full text
    Several cardiovascular diseases are caused from localised abnormal blood flow such as in the case of stenosis or aneurysms. Prevailing theories propose that the development is caused by abnormal wall shear stress in focused areas. Computational fluid mechanics have arisen as a promising tool for a more precise and quantitative analysis, in particular because the anatomy is often readily available even by standard imaging techniques such as magnetic resonance and computed tomography angiography. However, computational fluid mechanics rely on accurate initial and boundary conditions, which are difficult to obtain. In this paper, we address the problem of recovering high‐resolution information from noisy and low‐resolution physical measurements of blood flow (for example, from phase‐contrast magnetic resonance imaging [PC‐MRI]) using variational data assimilation based on a transient Navier‐Stokes model. Numerical experiments are performed in both 3D (2D space and time) and 4D (3D space and time) and with pulsatile flow relevant for physiological flow in cerebral aneurysms. The results demonstrate that, with suitable regularisation, the model accurately reconstructs flow, even in the presence of significant noise
    corecore